Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2433: 217-226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34985747

RESUMO

Metabolomics is the systems-scale study of the biochemical intermediates of metabolism. This approach has great potential to uncover how metabolic intermediates are used and generated in cell-free expression systems, something that is to date not well understood. Here, we present a detailed metabolomics protocol for characterization of the small molecules in cell-free systems. We specifically focus on the analysis of Escherichia coli lysate-based cell-free systems using gas chromatography coupled to mass spectrometry. Measuring and monitoring the metabolic changes in cell-free systems can provide insight into the ways that metabolites affect the productivity of cell-free reactions, ultimately allowing for more informed engineering and optimization efforts for cell-free systems.


Assuntos
Escherichia coli , Metabolômica , Sistema Livre de Células , Escherichia coli/genética , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas , Metabolômica/métodos
2.
ACS Synth Biol ; 10(9): 2252-2265, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34478281

RESUMO

The field of metabolic engineering has yielded remarkable accomplishments in using cells to produce valuable molecules, and cell-free expression (CFE) systems have the potential to push the field even further. However, CFE systems still face some outstanding challenges, including endogenous metabolic activity that is poorly understood yet has a significant impact on CFE productivity. Here, we use metabolomics to characterize the temporal metabolic changes in CFE systems and their constituent components, including significant metabolic activity in central carbon and amino acid metabolism. We find that while changing the reaction starting state via lysate preincubation impacts protein production, it has a comparatively small impact on metabolic state. We also demonstrate that changes to lysate preparation have a larger effect on protein yield and temporal metabolic profiles, though general metabolic trends are conserved. Finally, while we improve protein production through targeted supplementation of metabolic enzymes, we show that the endogenous metabolic activity is fairly resilient to these enzymatic perturbations. Overall, this work highlights the robust nature of CFE reaction metabolism as well as the importance of understanding the complex interdependence of metabolites and proteins in CFE systems to guide optimization efforts.


Assuntos
Escherichia coli/genética , Engenharia Metabólica/métodos , Metaboloma , Sistema Livre de Células , Fosfato de Di-Hidroxiacetona/metabolismo , Proteínas de Escherichia coli/genética , Cromatografia Gasosa-Espectrometria de Massas , Glicólise/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Análise de Componente Principal
3.
Methods Mol Biol ; 1927: 179-189, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30788792

RESUMO

Metabolomics is the systems-scale measurement of biochemical intermediates in biological systems; by virtue of its deep and broad study of metabolism, it has great potential for applications in metabolic engineering. While a number of the analytical techniques used widely in metabolomics are familiar to metabolic engineers performing post hoc analyses of product titers, the requirements for accurately capturing metabolism at a systems scale rather than just measuring a single secreted product are much more complicated. Nonetheless, metabolomics (which is still not widely available as an affordable consumer service like many molecular biology services) is within reach of many properly equipped metabolic engineering groups. To this end, we present a detailed metabolomics protocol with application to strain optimization. Specifically, we focus on characterizing metabolism in the yeast Saccharomyces cerevisiae using gas chromatography coupled to mass spectrometry. The measurement of metabolic intermediates that results from such approaches has the potential to enable more informed and rational efforts towards pathway engineering and strain optimization.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Engenharia Metabólica , Metabolômica , Fenômenos Microbiológicos , Técnicas Microbiológicas , Análise de Dados , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Software
4.
Ind Eng Chem Res ; 58(50): 22472-22482, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-32063671

RESUMO

Biotechnology has transformed the production of various chemicals and pharmaceuticals due to its efficient and selective processes, but it is inherently limited by its use of live cells as "biocatalysts." Cell-free expression (CFE) systems, which use a protein lysate isolated from whole cells, have the potential to overcome these challenges and broaden the scope of biomanufacturing. Implementation of CFE systems at scale will require determining clear markers of lysate activity and developing supplementation approaches that compensate for potential variability across batches and experimental protocols. Towards this goal, we use metabolomics to relate lysate preparation and performance to metabolic activity. We show that lysate processing affects the metabolite makeup of lysates, and that lysate metabolite levels change over the course of a CFE reaction regardless of whether a target compound is produced. Finally, we use this information to develop ways to standardize lysate activity and to design an improved CFE system.

5.
Front Microbiol ; 9: 760, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29774011

RESUMO

Using cells as microbial factories enables highly specific production of chemicals with many advantages over chemical syntheses. A number of exciting new applications of this approach are in the area of precision metabolic engineering, which focuses on improving the specificity of target production. In recent work, we have used precision metabolic engineering to design lycopene-producing Escherichia coli for use as a low-cost diagnostic biosensor. To increase precursor availability and thus the rate of lycopene production, we heterologously expressed the mevalonate pathway. We found that simultaneous induction of these pathways increases lycopene production, but induction of the mevalonate pathway before induction of the lycopene pathway decreases both lycopene production and growth rate. Here, we aim to characterize the metabolic changes the cells may be undergoing during expression of either or both of these heterologous pathways. After establishing an improved method for quenching E. coli for metabolomics analysis, we used two-dimensional gas chromatography coupled to mass spectrometry (GCxGC-MS) to characterize the metabolomic profile of our lycopene-producing strains in growth conditions characteristic of our biosensor application. We found that the metabolic impacts of producing low, non-toxic levels of lycopene are of much smaller magnitude than the typical metabolic changes inherent to batch growth. We then used metabolomics to study differences in metabolism caused by the time of mevalonate pathway induction and the presence of the lycopene biosynthesis genes. We found that overnight induction of the mevalonate pathway was toxic to cells, but that the cells could recover if the lycopene pathway was not also heterologously expressed. The two pathways appeared to have an antagonistic metabolic effect that was clearly reflected in the cells' metabolic profiles. The metabolites homocysteine and homoserine exhibited particularly interesting behaviors and may be linked to the growth inhibition seen when the mevalonate pathway is induced overnight, suggesting potential future work that may be useful in engineering increased lycopene biosynthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...